
Lecture 2
Object Oriented Programming I

A paradigm shift

Lecture Overview
 Overview of programming models:
 Procedural programming
 Object Oriented programming

 Object Oriented Features in C++
 Class
 Object
 Methods
 Attributes

[CS1020E AY1617S1 Lecture 2] 2

Programming Models
 All programming languages like C, C++, Java etc

has an underlying programming model
 Also known as programming paradigms

 Programming model tells you:
 How to organize the information and processes needed for

a solution (program)
 Allows/facilitates a certain way of thinking about the

solution
 Analogy: It is the “world view” of the language

 Popular programming paradigms:
 Procedural: C, Pascal, Fortran, etc
 Object Oriented: Java, C++, C#, etc
 etc

[CS1020E AY1617S1 Lecture 2] 3

Bank Account : A simple illustration
 Let’s look at C implementation of a simple

bank account
 Basic Information:
 Account Number: an integer value
 Balance: a double value (should be >= 0)

 Basic operations:
 Withdrawal

 Attempt to withdraw a certain amount from account
 Deposit

 Attempt to deposit a certain amount from account
 Using "struct" (structure) is the best

approach in C
[CS1020E AY1617S1 Lecture 2] 4

Bank Account : C Implementation
typedef struct {

int acctNum;
double balance;

} BankAcct;

void initialize(BankAcct* baPtr, int anum) {
baPtr->acctNum = anum;
baPtr->balance = 0;

}
int withdraw(BankAcct* baPtr, double amount) {

if (baPtr->balance < amount)
return 0; // indicate failure

baPtr->balance -= amount;
return 1; // success

}
void deposit(BankAcct* baPtr, double amount) {

if (amount > 0)
baPtr->balance += amount;

}

Structure to hold
information for bank

account

Functions to
provide basic

operations

[CS1020E AY1617S1 Lecture 2] 5

Bank Account : C Implementation

 C treats the data (structure) and process (function)
as separate entity:

Data Function

Passed
into

Modifies

BankAcct
structure

deposit(...)
withdraw(...)

[CS1020E AY1617S1 Lecture 2] 6

Bank Account : Usage Examples
BankAcct ba1;

initialize(&ba1, 12345);
deposit(&ba1, 1000.50);
withdraw(&ba1, 500.00);
withdraw(&ba1, 600.00);
deposit(&ba1, -1000.00);

...

BankAcct ba2;

deposit(&ba2, 1000.50);

initialize(&ba2, 67890);
ba2.acctNum = 54321;

ba2.balance = 10000000.00;
...

Correct use of
BankAcct and its

operations

Wrong and
malicious exploits

of BankAcct

Forgot to initialize

Account Number
should not change!

Balance should be
changed by authorized

operations only
[CS1020E AY1617S1 Lecture 2] 7

Procedural language: Characteristics

 C is a typical procedural language

 Characteristics of procedural languages:
 View program as a process of transforming data

 Data and associated functions are separated
 Require good programming discipline to ensure good

organization in a program

 Data is publicly accessible to everyone

[CS1020E AY1617S1 Lecture 2] 8

Procedural language: Summary
 Advantages:

 Closely resemble the execution model of computer
 Efficient in execution and allows low level optimization

 Less overhead during design

 Disadvantages:
 Harder to understand

 Logical relation between data and functions is not clear
 Hard to maintain

 Requires self-imposed good programming discipline
 Hard to extend / expand

 e.g. How to introduce a new type of bank account?
 Without affecting the current implementation
 Without recoding the common stuff

[CS1020E AY1617S1 Lecture 2] 9

Object Oriented Languages

Definition and Motivation

Object Oriented Languages
 Main features:
 Encapsulation

 Group data and associated functionalities into a single
package

 Hide internal details from outsider
 Inheritance

 A meaningful way of extending current implementation
 Introduce logical relationship between packages

 Polymorphism
 Behavior of the functionality changes according to the

actual type of data

[CS1020E AY1617S1 Lecture 2] 11

Bank Account : OO Implementation
 A conceptual view of equivalent object oriented

implementation for the Bank Account

No direct access to
data

Process

Data

Use process to
manipulate data Bank Account

Object

Encapsulation of
data and process

[CS1020E AY1617S1 Lecture 2] 12

OO language: Characteristics
 Characteristics of OO languages:

 View program as a collection of objects
 Computation is performed through interaction of objects

 Each object has a set of capabilities (functionalities)
and information (data)
 Capabilities are generally exposed to the public
 Data are generally kept within the object

 Analogy:
 Watching a DVD movie in the real world

 DVD and DVD players are objects with distinct capabilities
 Interaction between them allows a DVD movie to be played by

a DVD player
[CS1020E AY1617S1 Lecture 2] 13

OO language: Summary
 Advantages:
 Easier to design as it closely resembles the real

world
 Easier to maintain:

 Modularity is enforced
 Extensible

 Disadvantages:
 Less efficient in execution

 Further removed from low level execution
 Program is usually longer with high design

overhead

[CS1020E AY1617S1 Lecture 2] 14

C++ :
Object Oriented Features

What makes C++ Object Oriented

Encapsulation in C++ : Classes
 In C++, a package of data + processes == class

 A class is a user defined data type
 Variables of a class are called objects

 Each class contains:
 Data: each object has an independent copy
 Functions: process to manipulate data in an object

 Terminology:
 Data of a class :

 member data (attributes)
 Functions of a class:

 member functions (methods)

[CS1020E AY1617S1 Lecture 2] 16

Accessibility of attributes and methods
 Data and methods in a class can have different level

of accessibilities (visibilities)
 public

 Anyone can access
 Usually intended for methods only

 private
 Only object of the same class can access
 Recommended for all attributes

 protected
 Only object of the same class or its children can access
 Recommended for attributes/methods that are common in

a “family”
 More on this topic later

[CS1020E AY1617S1 Lecture 2] 17

Bank Account : C++ Implementation
class BankAcct {

private:
int _acctNum;
double _balance;

public:
int withdraw(double amount) {

if (_balance < amount)
return 0;

_balance -= amount;
return 1;

}
void deposit(double amount) {

if (amount > 0)
_balance += amount;

}
};

Class name follows normal identifier rule,
notice the closing ‘};’ at the bottom

"private:" indicates all following definitions
have private visibility

We have only private attributes in this example

"public:" indicates all following
definitions have public visibility

Most methods should have public
visibility

A method can access attribute directly

[CS1020E AY1617S1 Lecture 2] 18

Bank Account : Class and Object
 The class declaration defines a new data type

 No actual variables are allocated!
 To have a variable of a class:

 Create (instantiate) object

 The distinction between class and object
 Similar to structure declaration and structure variable in C
 Analogy: class == blue print, object == actual house

 To access a public attribute or method of an object
 Use the “.” dot operator
 Similar to structure access in C

[CS1020E AY1617S1 Lecture 2] 19

Bank Account : Example usage

// BankAcct class declaration from previous slide

int main() {
BankAcct ba1;

ba1.deposit(1000);
ba1.withdraw(699.50);

ba1._acctNum = 1357;
ba1._balance = 10000000;

}

Error: Outsider cannot
access private attributes

Question: How to initialize?

Interacts with object using
public methods

[CS1020E AY1617S1 Lecture 2] 20

Constructors
 The previous implementation for bank account is

incomplete
 account number and balance are not initialized

 Each class has one or more specialized methods
known as constructor
 Called automatically when an object is created

 Default constructor
 Take in no parameter
 Automatically provided by the compiler if programmer does

not define any constructor method
 Non-default constructor

 Can take in parameter
 Can have multiple different constructors

[CS1020E AY1617S1 Lecture 2] 21

class BankAcct {

private:
//...same...

public:
BankAcct(int aNum) {

_acctNum = aNum;
_balance = 0;

}

BankAcct(int aNum, double amt)
: _acctNum(aNum), _balance(amt) {
}

//...other methods are not shown
};

Bank Account : Two Example Constructors

Constructor method has
the same name as the

class with no return type

Alternative syntax to initialize
object attributes. Known as

initialization list. Only valid in
constructor method.

[CS1020E AY1617S1 Lecture 2] 22

Bank Account : Example usage 2
int main() {

BankAcct ba1(1234);

BankAcct ba2(9999, 1001.40);

BankAcct ba3;
}

 If programmer defines extra constructors:
 Compiler no longer provides the default constructor
 Programmer have to define default constructor if it is useful

Make use of 1st constructor

Make use of 2nd constructor

Error: default constructor is no longer valid

[CS1020E AY1617S1 Lecture 2] 23

Problem: Print Account Information
 At this point, the BankAcct class has some

usage problems:
 Cannot access the account number and balance

outside from the class

 Modify the class such that:
 We can print out the account number and balance

as an outsider
 One possible answer:

 Implement a simple print() method for BankAcct
class

[CS1020E AY1617S1 Lecture 2] 24

EXAMINING OBJECT
What? Where? When? How?

25[CS1020E AY1617S1 Lecture 2]

Object : Memory Snapshot
class BankAcct {
//... other code not shown ...
int withdraw(double amount) {

if (_balance < amount)
return 0;

_balance -= amount;
return 1;

}};

int main() {
BankAcct ba1(1234, 300.50);
BankAcct ba2(9999, 1001.40);

ba1.withdraw(100.00);
ba2.withdraw(100.00);

}

_acctNum

_balance
ba1

_acctNum

_balance
ba2

…

…

…

…

1001.40

9999

1234

300.50200.50

901.40

[CS1020E AY1617S1 Lecture 2] 26

Object : What is “this”
 A common confusion:
 How does the method “knows” which is the

“object” currently executing?

 Whenever a method is called,
 a pointer to the calling object is set

automatically
 Given the name “this” in C++, meaning “this

particular object”
 All attributes/methods are then accessed

implicitly through this pointer

[CS1020E AY1617S1 Lecture 2] 27

Object : What is “this” (1)
class BankAcct {
//... other code not shown ...
int withdraw(double amount) {

if (_balance < amount)
return 0;

_balance -= amount;
return 1;

}
};

int main() {
BankAcct ba1(1234, 300.50);
BankAcct ba2(9999, 1001.40);

ba1.withdraw(100.00);
ba2.withdraw(100.00);

}

…

…

123

123

1024

…

…

1001.40

9999

1234

300.50

_acctNum

_balance

_acctNum

_balance

ba1

ba2

At this point

this

[CS1020E AY1617S1 Lecture 2] 28

class BankAcct {
//... other code not shown ...
int withdraw(double amount) {

if (_balance < amount)
return 0;

_balance -= amount;
return 1;

}
};

int main() {
BankAcct ba1(1234, 300.50);
BankAcct ba2(9999, 1001.40);

ba1.withdraw(100.00);
ba2.withdraw(100.00);

}

Object : What is “this” (2)

…

…

123

123

1024

…

…

1001.40

9999

1234

300.50

_acctNum

_balance

_acctNum

_balance

ba1

ba2

At this point

this

[CS1020E AY1617S1 Lecture 2] 29

200.50

Object : Passed by value

 Additionally, objects tend to contains lots of attributes
 Recommended to pass all objects by reference (L1)
 Caution: Any function/methods that modifies the object

will affect the actual parameter!

// BankAcct class definitions
void transfer(BankAcct& fromAcct,

BankAcct& toAcct, double amt) {
fromAcct.withdraw(amt);
toAcct.deposit(amt);

}

int main() {
// Simple testing on object passing
BankAcct ba1(1234, 200.50), ba2(9999, 9001.40);
transfer(ba2, ba1, 500.00);

}

Note that the Bank Accounts are
passed by reference (Lecture 1).

Question: What if we remove the “&”?

 Objects are passed by value (similar to structure in C)

[CS1020E AY1617S1 Lecture 2] 30

Destructor
 Destructor is a specialized method of a class

 Called automatically when
 Object of the class goes out of scope
 Object of the class get deleted explicitly

 Destructor should be defined for classes that
 Allocated memory dynamically
 Requested system resources (e.g. file)

 Syntax for destructor:
 Method with same name as the class:

 Prefixed by ~
 Empty parameter list and no return type

 Only one per class
 If destructor is not implemented:

 A default destructor will be given automatically
 Suitable for most classes you write in this course

Portion of code
delimited by

curly braces { }

[CS1020E AY1617S1 Lecture 2] 31

Destructor : An Example

Output:
123 alive!!
456 alive!!
456 died!!
999 alive!!
End of f()
999 died!!
789 alive!!
789 died!!
End of Main
123 died!!

A

B

C

class Simple {
private:

int _id;
public:

Simple(int i):_id(i){
cout << _id << " alive!!\n";

}
~Simple(){

cout << _id << " died!!\n";
}

};

/* class Simple -> */

void f() {
Simple s(999);
cout << "End of f()\n";

}

int main() {
Simple s(123), *sptr;

if (true) {
Simple s2(456);

}

f();

sptr = new Simple(789);
delete sptr;

cout << "End of main\n";
return 0;

}

C

A

B

[CS1020E AY1617S1 Lecture 2] 32

Life of an Object
 Allocation ("Birth"):

 Happens when:
 Object declaration or new keyword is used on object pointer

 Steps:
1. The object is allocated in memory
2. Constructor of the object is called

 Constructor is chosen base on the parameters provided
 Alive:

 After constructor
 Object ready to be used

 Deallocation ("Death"):
 Happens when:

 Object went out of scope or delete keyword is used on object
pointer

 Steps:
1. Destructor of the object is called
2. The memory occupied by the object is returned to the system

[CS1020E AY1617S1 Lecture 2] 33

OO IN GENERAL

34[CS1020E AY1617S1 Lecture 2]

OO Paradigm is not a language!
 Object Oriented Paradigm is:
 A way to organizing information and process
 A "worldview" of the programming language

 Even though the examples are in C++, the
main ideas can be found in other OO
languages:
 Class, Object
 Attribute, Methods
 Visibilities

35[CS1020E AY1617S1 Lecture 2]

Other OO Language: Java
class BankAcct {

private int _acctNum;
private double _balance;

public BankAcct() {}

public BankAcct(int aNum, double bal) {
_acctNum = aNum;
_balance = bal;

}

public boolean withdraw(double amount) {
if (_balance < amount)

return false;
_balance -= amount;
return true;

}

public void deposit(double amount)
{ ... Code not shown ... }
}

Visibility is stated for each
attribute

Constructors

Methods

36[CS1020E AY1617S1 Lecture 2]

Other OO Language: Python
class BankAcct:

_acctNum = 0
_balance = 0.0

def __init__(self, aNum, bal):
_acctNum = aNum
_balance = bal

def withdraw(self, amount):
if _balance < amount:

return False
_balance -= amount
return True

def deposit(self, amount):
#code not shown

Attribute

Constructor

Methods

37[CS1020E AY1617S1 Lecture 2]

[CS1020E AY1617S1 Lecture 2]

Summary
C

++
 E

le
m

en
ts Object Oriented Features:

- Encapsulation
class and object
assessibility
attribute and method

Reference
 [Carrano] Chapter 8: Advanced C++Topics

 [Elliot & Wolfgang] Chapter P.4, P.5

38

