Lecture 2
Object Oriented Programming I

A paradigm shift

Lecture Overview

Overview of programming models:
o Procedural programming
o Object Oriented programming

Object Oriented Features in C++
o Class

o Object

o Methods

o Attributes

[CS1020E AY1617S1 Lecture 2]

Programming Models

All programming languages like C, C++, Java etc
has an underlying programming model
o Also known as programming paradigms

Programming model tells you:

o How to organize the information and processes needed for
a solution (program)

o Allows/facilitates a certain way of thinking about the
solution

o Analogy: It is the “world view” of the language
Popular programming paradigms:

o Procedural: C, Pascal, Fortran, etc

o Object Oriented: Java, C++, C#, etc

o etc

[CS1020E AY1617S1 Lecture 2]

Bank Account : A simple illustration

Let’s look at C implementation of a simple
bank account

Basic Information:
o Account Number: an integer value
o Balance: a double value (should be >= 0)

Basic operations:

o Withdrawal
Attempt to withdraw a certain amount from account

o Deposit

Attempt to deposit a certain amount from account
Using "struct" (structure) is the best
approach in C

[CS1020E AY1617S1 Lecture 2]

‘ Bank Account : C Implementation

typedef struct {
Iint acctNum;
double balance;
} BankAcct;

Structure to hold
information for bank
account

void initialize(BankAcct* baPtr, int anum) {
baPtr->acctNum = anum;
baPtr->balance = O;

+
int withdraw(BankAcct* baPtr, double amount)
1T (baPtr->balance < amount)
return O; // indicate fainlure
baPtr->balance -= amount;
return 1; // success
+
voild deposit(BankAcct* baPtr, double amount)
iIf (amount > 0)
baPtr->balance += amount;

}

— [CS1020E AY1617S1 Lecture 2]

Functions to
provide basic
operations

Bank Account : C Implementation

C treats the data (structure) and process (function)
as separate entity:

................. Passed .
INto
....Modifies
BankAcct deposit(...)
structure withdraw(...)

[CS1020E AY1617S1 Lecture 2]

Bank Account : Usage Examples

Correct use of
BankAcct and Its

operations

Wrong and
malicious exploits
of BankAcct

[CS1020E AY1617S1 Lecture 2]

BankAcct bal;

inttialize(&bal, 12345);
deposit(&bal, 1000.50);
withdraw(&bal, 500.00);
withdraw(&bal, 600.00);
deposit(&bal, -1000.00);

BankAcct ba2;

-
-
-
-
-
-
-
-
-
-
-

deposit(&ba2, 1000.50);

inttialize(&ba2, 67890); ____. :

-
——
-

ba2.acctNum = 54321;

ba2.balance = 10000000.00;

. Account Number
should not change!

. Balance should be |
. changed by authorized |
| operations only

Procedural language: Characteristics

C Is a typical procedural language

Characteristics of procedural languages:
o View program as a process of transforming data

o Data and associated functions are separated

Require good programming discipline to ensure good
organization in a program

o Data is publicly accessible to everyone

[CS1020E AY1617S1 Lecture 2]

Procedural language: Summary

Advantages:

o Closely resemble the execution model of computer
Efficient in execution and allows low level optimization

o Less overhead during design

Disadvantages:

o Harder to understand

Logical relation between data and functions is not clear
o Hard to maintain

Requires self-imposed good programming discipline
o Hard to extend / expand

e.g. How to introduce a new type of bank account?
o Without affecting the current implementation
o Without recoding the common stuff

[CS1020E AY1617S1 Lecture 2]

Object Oriented Languages

Definition and Motivation

Object Oriented Languages

Main features:

o Encapsulation

Group data and associated functionalities into a single
package

Hide internal details from outsider
o Inheritance

A meaningful way of extending current implementation
Introduce logical relationship between packages

o Polymorphism

Behavior of the functionality changes according to the
actual type of data

[CS1020E AY1617S1 Lecture 2]

11

Bank Account : OO Implementation

A conceptual view of equivalent object oriented
iImplementation for the Bank Account

.... .

X" Process

Bank Account
> Object

Encapsulation of
data and process

No direct access to
data

[CS1020E AY1617S1 Lecture 2] 12

OO language: Characteristics

Characteristics of OO languages:

o View program as a collection of objects
Computation is performed through interaction of objects

o Each object has a set of capabilities (functionalities)
and information (data)

Capabilities are generally exposed to the public
Data are generally kept within the object

Analogy:

o Watching a DVD movie Iin the real world
DVD and DVD players are objects with distinct capabilities

Interaction between them allows a DVD movie to be played by
a DVD player

[CS1020E AY1617S1 Lecture 2]

OO language: Summary

Advantages:

o Easier to design as it closely resembles the real
world

o Easier to maintain:

Modularity is enforced
Extensible

Disadvantages:

o Less efficient in execution
Further removed from low level execution

o Program is usually longer with high design
overhead

[CS1020E AY1617S1 Lecture 2]

14

C++:
Object Oriented Features

What makes C++ Object Oriented

Encapsulation in C++ : Classes

In C++, a package of data + processes == class

o Aclass is a user defined data type
o Variables of a class are called objects

Each class contains:
o Data: each object has an independent copy
o Functions: process to manipulate data in an object

Terminology:

o Data of a class :
member data (attributes)

o Functions of a class:
member functions (methods)

[CS1020E AY1617S1 Lecture 2]

16

Accessibility of attributes and methods

Data and methods in a class can have different level
of accessibilities (visibilities)

public

o Anyone can access

o Usually intended for methods only

private

o Only object of the same class can access

o Recommended for all attributes

protected

o Only object of the same class or its children can access

o Recommended for attributes/methods that are common in
a “family”

o More on this topic later

[CS1020E AY1617S1 Lecture 2] 17

Bank Account : C++ Implementation

| BankA . Class name follows normal identifier rule,
class BankAcct { notice the closing ‘};’ at the bottom

private: “private:" indicates all following definitions
int _acctNum; have private visibility
double _balance; ~ We have only private attributes in this example
ublic: publ|c catos all ollowine ™
int withdraw(double amount) { definitions have public visibility
if (_balance < amount) = Most methods should have public
return O; | visibility
_balance -= amount:
return 1; . Amethod can access aftrioute directly |
X

void deposit(double amount) {
iIT (amount > 0)
_balance += amount;

[CS1020E AY1617S1 Lecture 2]

Bank Account : Class and Object

The class declaration defines a new data type
o No actual variables are allocated!

To have a variable of a class:
o Create (instantiate) object

The distinction between class and object
o Similar to structure declaration and structure variable in C
o Analogy: class == blue print, object == actual house

To access a public attribute or method of an object
o Use the “.” dot operator

o Similar to structure access in C

[CS1020E AY1617S1 Lecture 2]

19

‘ Bank Account : Example usage

// BankAcct class declaration from previous slide

BankAcct bal; | Question: How to initialize?

..

bal.deposit(1000); Interacts with object using
bal.withdraw(699.50); public methods
bal. acctNum = 1357: ErrorOuts|dercannot
bal. balance = 10000000; access private attributes

— [CS1020E AY1617S1 Lecture 2]

20

Constructors

The previous implementation for bank account is
iIncomplete

o account number and balance are not initialized

Each class has one or more specialized methods
known as constructor

o Called automatically when an object is created

Default constructor
o Take In no parameter

o Automatically provided by the compiler if programmer does
not define any constructor method

Non-default constructor
o Can take in parameter
o Can have multiple different constructors

[CS1020E AY1617S1 Lecture 2]

21

Bank Account : Two Example Constructors

class BankAcct {

private:
//...same. ..

public: o=

- . Constructor method has

BankAcct(int aNum)

' the same name as the
{ . Class with no return type i

_acctNum = aNumj;
_balance = 0O;

}

BankAcct (int aNum,

}

: _acctNum(aNum) , balance (amt) ({

double amt)

N
N

\

// . . _.other methods
}

arepot shown___________________________ [_______

Semmmm =TT . Alternative syntax to initialize

— [CS1020E AY1617S1 Lecture 2]

object attributes. Known as
Initialization list. Only valid in
constructor method.

-

Bank Account : Example usage 2

int mainQ) { T :
BankAcct bal(1234); ~ Make use of 13t constructor

..

If programmer defines extra constructors:
o Compiler no longer provides the default constructor
o Programmer have to define default constructor if it is useful

[CS1020E AY1617S1 Lecture 2] 23

Problem: Print Account Information

At this point, the BankAcct class has some
usage problems:

o Cannot access the account number and balance
outside from the class

Modify the class such that:

o We can print out the account number and balance
as an outsider

o One possible answer:

Implement a simple print() method for BankAcct
class

[CS1020E AY1617S1 Lecture 2]

24

What? Where? When? How?

EXAMINING OBJECT

— [CS1020E AY1617S1 Lecture 2]

25

‘ Object : Memory Snapshot

class BankAcct {

// ... other code not shown ...

int withdraw(double amount) {
1T (_balance < amount)

return O;
_balance -= amount;
return 1;

j 3 &

int main() {
BankAcct bal(1234, 300.50);

BankAcct ba2(9999, 1001.40);

bal.withdraw(100.00);
ba2.withdraw(100.00);

— [CS1020E AY1617S1 Lecture 2]

bal <

ba2 <

~

_acctNum
_balance
-

(_acctNum

_balance

-

1234

200.50

9999

901.40

26

Object : What 1s “this”

A common confusion:

o How does the method “knows” which is the
“object” currently executing?

Whenever a method Is called,

o a pointer to the calling object is set
automatically

o Given the name “this” in C++, meaning “this
particular object”

All attributes/methods are then accessed
implicitly through this pointer

27

‘Object : What is “this” (1)

h
class BankAcct { this
// ... other code not shown ...
int withdraw(double amount) {
it (_bilancg_< amount) (acctNum 1234
recurn ’ bal <
_balance -= amount; | _balance | 300.50
return 1;
} (acctNum 9999
}; ba2 <
_balance | 1001.40
int main() {
BankAcct bal(1234, 300.50);
BankAcct ba2(9999, 1001.40);

bal.withdraw(100.00) ; < = At this point

ba2.withdraw(100.00);

— [CS1020E AY1617S1 Lecture 2]

‘ Object : What 1s “this”

}
}-

class BankAcct {

// . ..
int withdraw(double amount) {

other code not shown ...

1T (_balance < amount)

return O;
_balance -= amount;
return 1;

int main() {

BankAcct bal(1234, 300.50);
BankAcct ba2(9999, 1001.40);

bal.withdraw(100.00);

(2)

this

bal <

ba2 <

s

acctNum 1234
M 200.50
(acctNum 9999

_balance | 1001.40

~

ba2.withdraw(100.00) ; < =ssssssm At this point

— [CS1020E AY1617S1 Lecture 2]

29

Object : Passed by value

Objects are passed by value (similar to structure in C)

// BankAcct class definitions
void transfer(BankAcct& fromAcct,
BankAccté&, toAcct, double amt) {

fromAcct.withdraw(amt)>. T T e}
toAcct.deposit(amt); 7! Note that the Bank Accounts are

} passed by reference (Lecture 1).

_ _ + Question: What if we remove the “&"?
int main() { e e e

// Simple testing on object passing
BankAcct bal(1234, 200.50), ba2(9999, 9001.40);
transfer(ba2, bal, 500.00);

}

Additionally, objects tend to contains lots of attributes
o Recommended to pass all objects by reference (L1)

o Caution: Any function/methods that modifies the object
will affect the actual parameter!

[CS1020E AY1617S1 Lecture 2] 30

Destructor

Destructor is a specialized method of a class

o Called automatically when i
Object of the class goes out of scope- . delimited by
Object of the class get deleted explicitly . curly braces { }

Destructor should be defined for classes that =~~~ 7777777

o Allocated memory dynamically

o Requested system resources (e.g. file)

Syntax for destructor:

o Method with same name as the class:
Prefixed by ~
Empty parameter list and no return type

o Only one per class

If destructor is not implemented:

o A default destructor will be given automatically
Suitable for most classes you write in this course

[CS1020E AY1617S1 Lecture 2]

__________________ . Portion of code

31

Destructor : An Example

/* class Simple -> */ class Simple {
private:
void FQO { e ek
Simple s(999) fﬂwx DUbIEC' _ _ - -
cout << "End of fO\n";\ B Simple(int 1) _id(i){

1 o cout << _id << " alivelI\n";

+
int mainQ { ~Simple(){

Simple s(123), *sptr; cout << _1d << " died!!\n";

if (true) { };
Simple 52(456): A | S

} 2123 aiive!!

fO; 456 died!!

Z - sptr = new Simple(789); gE d of f .
inﬁdelete sptr; ; =na 0 O

cout << TEnd of main\n"; %789 died!!
return O; . End
+ 123 died!!

..

[CS1020E AY1617S1 Lecture 2]

32

Lite of an Object

Allocation ("Birth"):
o Happens when:

Object declaration or new keyword is used on object pointer
o Steps:

The object is allocated in memory
Constructor of the object is called
o Constructor is chosen base on the parameters provided

Allve:
o After constructor
o Object ready to be used

Deallocation ("Death"):
o Happens when:

Object went out of scope or delete keyword is used on object
pointer

o Steps:
Destructor of the object is called
The memory occupied by the object is returned to the system

[CS1020E AY1617S1 Lecture 2]

33

OO IN GENERAL

— [CS1020E AY1617S1 Lecture 2]

34

OO Paradigm is not a language!

Object Oriented Paradigm is:
o A way to organizing information and process
o A "worldview" of the programming language

Even though the examples are in C++, the
main ideas can be found in other OO
languages:

o Class, Object

o Attribute, Methods

a Visibilities

‘ Other OO Language: Java

class BankAcct {

private int _acctNum;
private double _balance;

public BankAcct() {}

_acctNum = aNum;

public BankAcct(int aNum, double bal) {

Visibility is stated for each
attribute

_balance = bal;
} _
public boolean withdraw(double amount) { =

1T (_balance < amount)

return false;

_balance -= amount;

return true: | e,
} ~ Methods
public void deposit(double amount)
{ ... Code not shown ... }
} .

— [CS1020E AY1617S1 Lecture 2]

36

‘ Other OO Language: Python

class BankAcct:

_acc tNum = O :

_balance = 0.0 AttrlbUte

def _I n I t__(SG I f , aNum , ba I) : Constructor
_acctNum = aNum TSR :

_balance = bal

def withdraw(self, amount):
iIT balance < amount:
return False
_balance -= amount g
return True [VEHIOUS
def deposit(self, amount):
#code not shown

— [CS1020E AY1617S1 Lecture 2]

Summary

» |Object Oriented Features:

= - Encapsulation

& class and object

] assessibility

5 attribute and method
Reference

[Carrano] Chapter 8: Advanced C++Topics

o [Elliot & Wolfgang] Chapter P.4, P.5

[CS1020E AY1617S1 Lecture 2]

38

